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1. OVERVIEW

My research interests lie in number theory and representation theory, with a particular focus on the
Langlands program.

The Langlands program proposes a far-reaching unification of arithmetic and representation theory
through a network of deep conjectures. It traces back to a letter Langlands wrote to Weil in 1967, where
he envisioned a vast generalization of class field theory that would connect Galois representations with
automorphic forms on reductive groups. While class field theory exemplifies the abelian case for GL;,
the modularity theorem, central to the proof of Fermat’s Last Theorem, realizes the case of GLs.

The Langlands program remains largely conjectural in the global case. However, substantial progress
has been achieved in the local theory over the past decades. In many cases, local correspondences for
a reductive group G have been established—most notably when G is GL, or a classical group—where
irreducible admissible representations are parametrized by L-parameters, namely certain representations
of the Weil-Deligne group W Dp of the base field F into the L-group “G(C) of G. In [BX25], we
computed the Rankin—Selberg gamma factor for a simple supercuspidal representation of Uy; twisted by
a multiplicative character. This computation contributes to the explicit realization of the local Langlands
correspondence for the quasi-split unitary group Usy;.

Another aspect of the Langlands program is the relative Langlands program. The philosophy is, for a
spherical subgroup H of G, the H-periods of cusp forms of G, or more generally representation-theoretic
functionals on G, are intimately connected with L-functions. This theory has deep historical roots,
ranging from the Waldspurger formula to the Gan—Gross—Prasad conjectures. Significant progress has
been made in recent years, particularly in the local setting. In [Xin25], we studied the Bessel functional,
one of the central objects in the Gan—Gross—Prasad framework, over a nonarchimedean local field. In
[WX24], we considered the pair (G, H) = (Uayp, Sp,,,) over a number field and studied the H-distinguished

spectrum.

2. UNRAMIFIED BESSEL FUNCTION FOR GSpin,,, ,; [Xin25]

A model provides a realization of an automorphic representation through certain equivariant function-
als, namely, Fourier coefficients obtained by integrating along a specific subgroup. In the representation
theory of orthogonal and general spin groups, the Bessel models play a central role in constructing au-
tomorphic L-functions for GSpin x GL via the Rankin—Selberg method. These models are defined by
Bessel functionals, that is, periods over Bessel subgroups giving rise to equivariant functions.

The concept also has a local analogue. In this work, we study the local Bessel model for unramified
representations and obtain an explicit formula for the unramified Bessel functions of odd general spin
groups, thereby extending the results known for orthogonal groups in [BFF97]. Such formulas in general
are needed in local computation of global construction. In particular, this one has an application in the

local unramified computation in the global Rankin—Selberg integral [ACS24].
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Let F' be a nonarchimedean local field of characteristic zero and let G be the split reductive group
GSping,, . (F) (n > 1) over F. Let P = M x U be the standard parabolic subgroup whose Levi part
M is GL} ™! xGSping. Here U is the unipotent radical of P. Let 6 be a non-degenerate character on U
and T be the identity component of the stabilizer of § in M. We consider the Bessel model with respect
to the Bessel subgroup R = T x U. (There are Bessel subgroups with a higher rank reductive part and
lower dimensional unipotent part. Due to certain reductive arguments, it is only interesting to consider
the computation for the minimal rank case, which we considered here.)

A Bessel functional of a representation 7 is an equivariant functional, i.e., a functional lies in the space
Hompg (7,6 ® A)

where A is a character of T'. Bessel functionals are unique up to scalar multiplication, that is, the above
space is of zero or one dimension. In this work, by writing an R-period integral B and showing its
convergence, we defined a Bessel functional. In line with the orthogonal group, we also established its
meromorphic continuation and functional equation.

The main object we consider is the normalized unramified function #, in the Bessel model of an

unramified principal series m = Indy. It is defined as

Hy(9) = (%) x B(7(9)¢x x),

where ¢ , is the standard spherical vector in the unramified principal series and () is a normalizing
factor so that H, on K is the identity. This is the analogue of the normalized unramified Whittaker
function.

Let x = (X0, - - -, Xn) be the unramified character, with the inducing unramified characters x; parametrized
by non-zero complex numbers «; = x;(w), where w is a fixed uniformizer in F. The main result we ob-
tained in this paper is a Casselman—Shalika type formula. We explain this in the non-split case, i.e.,
when 7' is isomorphic to the non-split GSpin,. By the equivalence properties the function satisfies and
by some short computations, the unramified Bessel function is indeed given by its evaluations on a set
of representatives of the double cosets R\G/K, where we choose certain torus elements w® indexed by
integral dominant weights 6 = (¢1,...,¢,). The image of such an element in SOs,,1 under the fixed

projection is the diagonal element diag(w®, ..., @").

Theorem 2.1. Suppose T is non-split, the Bessel function is given by

a(t) AT a0 ol 0 g1+ aff 0l h)
= >< |
L-a AlQr . an)

Hx(wa)

where A = Zwew(fl)lewth(“’)w is the alternator in the group algebra C[W] and 0p is the modulus
character of the Borel subgroup B.

We also obtained the split case, with a similar formula. In either case, the formula is obtained by
using the Casselman—Shalika method.

In the last section, we construct a Rankin—Selberg integral for cuspidal automorphic representations
of GSpiny,,,; X GL,. As an application of the explicit formula we obtain, we compute its local factor at

a good place.

Theorem 2.2. Suppose the global Bessel period does not vanish. Let m and o be cuspidal representations

of GSpin,,, 1 and GL,, respectively. The Rankin-Selberg integral we define for m @ o is factorizable.
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Moreover, at a good place v, the local factor equals

L(s+1/2, my X 0y,).

It is worth mentioning that a corollary of the proof of the above theorem contributes to the recent
construction of a Rankin—Selberg integral for GSpin x GL by Asgari, Cogdell, and Shahidi [ACS24],

particularly to their unramified computation.

3. GAMMA FACTOR OF A SIMPLE SUPERCUSPIDAL REPRESENTATION FOR Us, [BX25]

The local Langlands correspondence for a quasi-split reductive group G over a p-adic field F' asserts a

finite-to-one surjective map

LLC¢ : II(G) — @(G),
from the set of equivalence classes of irreducible smooth representations of G(F) to the set of L-
parameters.

This correspondence was first established for general linear groups GL,, by Henniart and by Harris—
Taylor, building on earlier works of Langlands, Carayol, and others. For classical groups, the approach
proceeds via the principle of functoriality. Arthur proved the correspondence for symplectic and orthog-
onal groups by developing the theory of endoscopic classification [Art13]. Following his approach, Mok
subsequently established the result for quasi-split unitary groups [Mok15]. Given this background, a

natural question to ask is:
Can one describe the endoscopic lift explicitly, even for particular representations?

This problem is highly nontrivial. Nevertheless, significant progress has been made in the case where
w is a simple supercuspidal representation. Such representations are defined to be supercuspidal repre-
sentations of minimal positive depth, which turn out to be constructed via compact induction from an
affine generic character. The study of simple supercuspidal representations provides important insights
and serves as a testing ground for understanding more general supercuspidal representations.

When the quasi-split group G is the unitary group Uy with respect to an unramified quadratic ex-
tension E/F, and the residue characteristic of F' is not 2, Oi [0i19] established a beautiful result: the
endoscopic lift I, a representation of GL,(E), of a simple supercuspidal representation 7 of Uy (F) is
again simple supercuspidal using character formulas. Moreover, an explicit description of the correspon-
dence through their inducing data was given. However, the restriction to the non-dyadic case cannot be
removed in his proof. In general, so far the only known method to address the dyadic case is via the
study of local factors of representations.

The method has proven highly effective for orthogonal groups SOn [AHKO25]. In that work, the
authors computed the local gamma factors. By analyzing the poles at s = 1, and by combining this
with structural results on the L-parameters, for simple supercuspidal 7 of SOy, they obtained an explicit
description of the endoscopic lift to GLy and the associated Langlands parameter.

In [BX25], we analyzed the local gamma factors for simple supercuspidal representations = X 7 of
Uy x GL; through the local Rankin—Selberg integrals. Fix a level-one additive character of F', and a
tamely ramified character T extending wg/r, the quadratic character associated with the field extension
E/F in the class field theory. The Rankin—Selberg integral L(W, fs, ¢) has the input data of a Whittaker
function W € (W,i/);,ll), a section in the parabolic induction f; € V(7,s) and a Schwartz function
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¢ € S(E). The gamma factor is then defined as

W, M(7,s)fs,¢)
LW, fs,¢)

where C(s,T,1) is the local coefficient (which we show to equal a Tate’s gamma factor) and M (7, s) is

v(s,m x 7, T,0) = wﬂ—(—l)T(—l)lO(S,T, @[J)E(

the standard intertwining operator. The gamma factors defined above are known to coincide with the
local gamma factors defined by the Langlands—Shahidi method [Mor25].

We note that the gamma factors are independent of the choice of the Whittaker function W and so
on, while they are only dependent on the representations. By finding a proper choice of the data of a
Whittaker function W, a section f, and a Schwartz function ¢, we obtained the two local integrals in the

definition of the gamma factor explicitly and consequently an explicit formula for the gamma factor.

Theorem 3.1. Let m = m 1 be a simple supercuspidal representation (indexed by a character w! of the

residue field kg and b € O;), T be a character of GL1 and v be a level-one additive character. Then
(s, x 7,1, 1) = wH(=1)7(=1) gp® (b w).
Equivalently, the gamma factor defined in the Langlands—Shahidi method is given by

yh(s,mx 7, 9) = —wH (D)7 (=17 (b T @)gp

According to the formula, the y-factor has no pole at s = 1. In line with the results for odd orthogonal
groups [Adr16, AHKO25], it is reasonable to expect that the endoscopic lift remains simple supercuspidal,

and that the explicit correspondence formally extends Oi’s result for the non-dyadic cases [Oi19].

4. Sp,,,-DISTINGUISHED Uj, SPECTRUM [WX24]

Let F' be a number field, and A be the ring of adeles. Denote the adelic quotient as [G] = G(F)\G(A).
For a closed subgroup H of G, in the theory of automorphic forms one is often interested in the period
integral

Prr(p) = /[H] o(h)dh.

An automorphic representation w of G is H-distinguished if Py defines a nontrivial functional on V.
Distinguished representations are closely related to functoriality and special values of L-functions.

The Langlands spectral decomposition is loosely written as

LQ([GD = Lguspidal([GD D Lfesidual([G]) D L%isenstein([G]) .
—_—

discrete spectrum continuous spectrum

In this work, we considered the pair (G, H) = (Uay, Spy,) and studied its H-distinguished spectrum.
In particular, we provided an upper bound for the H-distinguished spectrum. The upper bound is an
intermediate step of constructing a nontrivial discrete distinguished spectrum.

The H-distinguished spectrum in the cuspidal subspace L2([G]) is defined to be the space of those with
nonvanishing period integrals. While the convergence of a period integral of a cusp form is guaranteed
in general, there is no such theorem for a general automorphic form. As a consequence, we study the
period integral of pseudo-Eisenstein series and get the spectral information in the distributional sense.
Let the H-distinguished spectrum be denoted by L2, .., ([G]), essentially as the orthogonal complement

to the space of pseudo-Eisenstein series with a vanishing period integral. We obtained an upper bound
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with respect to the residue data:

Liaw(GDC @ L3(G)e
(X,€)€B y—_aist
where B _qgist is defined in terms of the vanishing subspaces of the intertwining periods.
The technical core of the work is the study of the H-period of a pseudo-Eisenstein series of G. Let
P = M x U be a standard parabolic subgroup of G. A pseudo-FEisenstein series is defined by a sum
(convergent for large R)

0s(9) = > o(v9),

yeP\G
where ¢ lies in a space of equivariant functions Cr(U(A)M\G(A)) with a certain “rapidly decreasing”
condition indexed by a positive real number R. The period integral admits a decomposition with respect
to double cosets P\G/H

Here X = {g € G : gg = e} is a set of representatives of the cosets G/H, and
L@ = [  om)dn.
Po\Go (A)

In the above integral decomposition, we first showed only those M -admissible orbits in P\ X contribute
to the summation. These orbits are bijective to the M-orbits M\ Ng(M)NX. We further showed only the
M-cuspidal orbits in M\Ng(M)N X contribute to the summation. To sum up, we obtained a shrinking

index for summation:
(M\Ng(M) OX)M,CHSP - M\Ng(M) NX = (P\X)p,adm - P\X

Moreover, we define the intertwining period.
M M
JON, 2, \) = / . (05" )A(hn)dh.
AN UL (8) M \Go (4)
Assuming the convergence of the intertwining period, we can further obtain the formula, our main result,

as follows

,Getman =3 / IR

[ ah)e
where z runs over the finite set of M-cuspidal orbits in M\Ng(M) N X.
In order to prove the convergence, we prepared the orbit analysis. In particular, the parabolic subgroup
L(z) behaves well in the M-minimal case, and the other cases are related to it via a directed graph.
Consequently, we are able to prove the convergence directly for the M-minimal case, while other cases

can be reduced to the M-minimal cases.

5. CURRENT PROJECTS AND FUTURE WORK

At present, I am pursuing the following projects and developing several related ideas:
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In collaboration with Pan Yan, we are establishing the fundamental properties for generic repre-
sentations of GSpin x GL over local fields. In particular, we will obtain its coincidence with the
gamma factor defined by the Langlands—Shahidi method.

For odd unitary groups, local gamma factors have been studied in [CW25], where in particular,
the equality between the Rankin—Selberg and Shahidi gamma factors was proved. The explicit
computation of the Rankin—Selberg gamma factor for simple supercuspidal representations in this
setting, together with the GSpin case mentioned above, is within reach.

The recent work of Adrian, Henniart, Kaplan, and Oi [AHKO25] analyzed L-parameters of or-
thogonal groups via gamma factors, providing a conceptual framework for such studies. Their
approach can likely be extended to further cases, such as GSpin and unitary groups.
Constructing the Sp,,,-distinguished discrete spectrum of Us,, arises naturally as a continuation
of [WX24].
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